PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

Visual Odometry Pipeline

Robert Jomar Malate, Aron Tse Rong Choo, Rajiv Bharadwaj, Kristof Floch

I. INTRODUCTION

ISUAL odometry (VO) is the process of incrementally
estimating the position and orientation of a vehicle by
examining the changes that motion induces on the subsequent
images of the onboard camera of the vehicle [1]. Using VO
is beneficial as it provides accurate pose estimation, while it
is not affected by external effects such as wheel slippage.
In this project, we have developed a monocular 2D—3D
visual odometry pipeline for ground vehicles. We have imple-
mented our pipeline using three open-source datasets:

o KITTI',

o Malaga 2,

o Parking 3.
The remainder of this report is structured as follows. In
Sec. II gives an overview of the technical and theoretical
background of monocular VO. Then Sec. III describes the
overall structure of our pipeline and describes the individual
components. Sec. IV presents the results of the experimental
evaluation. Finally, Sec. V contains the discussion of the
results, followed finally by the conclusions in Sec. VI. For
the code that was developed, refer to our GitHub (https:
//github.com/RobJMal/vamr_2024_project).

II. BACKGROUND

Given an image sequence, indirect VO begins with feature
detection and matching which enables us to establish cor-
respondences across frames. These correspondences are then
used to estimate the relative camera pose between successive
frames, thereby providing us with motion estimation. In con-
trast, direct VO uses the pixel intensities of successive frames
instead of feature points to estimate camera motion.

Next, given the estimated camera poses, the 3D position of
matched keypoints (henceforth referred to as landmarks) can
be triangulated, which can then be used to estimate subse-
quent camera poses through 2D—3D feature correspondences.
Lastly, local optimization steps such as bundle adjustment and
pose-graph optimization are often undertaken to refine the
estimated poses and minimize reprojection error.

Since monocular VO lacks depth information, it suffers from
scale ambiguity, meaning that the camera motion and position
can only be estimated up to an unknown scale factor. However,
this scale can be computed by integrating IMUs as is done in
Visual-Inertial Odometry (VIO) or by utilizing known object
sizes such as ArUco markers.

All authors are pursuing an MSc. in Robotics Systems and Con-
trol at ETH Zirich (e-mails: rmalate@ethz.ch, archoo@ethz.ch,
rbharadwaj@ethz.ch, kfloch@ethz.ch)

Uhttps://rpg.ifi.uzh.ch/docs/teaching/2024/kitti05.zip

Zhttps://rpg.ifi.uzh.ch/docs/teaching/2024/malaga-urban-dataset-extract-07.
zip

3https://rpg.ifi.uzh.ch/docs/teaching/2024/parking.zip

III. METHOD

Our method follows the suggested Markovian structure, with
the following two main components:

1) Initialization: a bootstrapping phase that searches for
informative landmarks and obtains the 2D—3D corre-
spondences via triangulation;

Continuous operation, where we process each incoming
frame and estimate the position and orientation of the
camera. This part can be further divided into 3 main
parts

2)

a) The tracking of existing 2D keypoints between
subsequent frames and then associating the tracked
2D keypoints with the 3D landmarks;

b) The estimation of the camera position and orienta-
tion using the 3D landmarks;

¢) The identification of new, additional keypoints and
triangulating the corresponding 3D landmarks.

A state object is passed through and updated in each stage of
the VO pipeline. It describes the state of the current frame and
consists of five items:

1) P holds the 2D keypoint locations in the current frame;

2) X holds the corresponding 3D landmark locations of the
2D keypoints in the current frame;

3) C holds the set of candidate keypoints in the current
frame;

4) F holds a set containing the first observations of the
track of each candidate keypoint;

5) Tau holds the camera poses at the first observation of
the candidate keypoint.

A. Initialization

The first component of the visual odometry pipeline was
the initialization of 2D keypoints and 3D landmarks from two
selected frames at the start of the image sequence. After gen-
erating inlier keypoints from feature extraction and matching
of the two frames, two-view geometry was used to estimate
the relative camera pose, thereby enabling the triangulation of
landmarks.

Our implementation largely followed the recommendations
provided. Two frames near the start of each dataset were
manually selected for bootstrapping, such that the baseline
between the two initialization frames is large enough to reduce
depth uncertainty (ideally at least 10% of the distance to
the closest features). Frame 0, along with frame 2, 3 and
4 for the Parking, Malaga, and KITTI datasets respectively,
were chosen as the two frames for bootstrapping. Next, the
Shi-Tomasi corner detector was used to extract features from
each of the two frames, followed by brute-force matching
using SIFT descriptors to compute feature correspondences.

PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

Visual Odometry Pipeline

Keypoints on Frame 2294

Keypoint Tracking Count

"l!l‘!u !Hr w; ?I

450 4

400 4

350 4

300 4

Number of keypoints

2504

2001

1501 &

1000
Frame

1500 2000

Trajectory and Landmarks of last 20 frames

e Camera Pose
+ Landmarks
* Current Camera Pose

59.28

59.27 4

59.26

2 position

59.25 4

59.24

59.23 1

39.00 39.02 39.04
X position

Full Trajectory

39.06 39.08

60 * Camera Pose
+ Current Camera Pose

7 position

-20 0 20 40 60 80
X position

Fig. 1: Screenshot of our VO pipeline

A corner detector was chosen for feature extraction instead of
a blob detector like SIFT because corners have better local-
ization accuracy, making them better suited for VO. Then, 5-
point random sample consensus (RANSAC) with the provided
camera intrinsics was used to remove outlier correspondences
and estimate the essential matrix, from which the relative pose
(R,t) was recovered. The camera pose of the frame 0 was
taken to be the origin of the world frame. Lastly, the provided
calibration matrix, K, coupled with the computed relative pose
and inlier correspondences were then used to triangulate a
point cloud of 3D landmarks (X) from the inlier 2D keypoints
(P). A small number of landmarks (2-3) were triangulated to
be behind the camera, which were then removed from the state
object along with their corresponding keypoints. The resultant
state object with P and X populated was then passed to the
continuous operation phase of the pipeline.

B. Keypoint tracking

The keypoint tracking module uses the 2D keypoints of
the state object (P), the 3D landmarks (X) and the new
incoming image to obtain the new keypoints and landmarks.
By utilizing the Kanade-Lucas-Tomasi (KLT) tracker of the
OpenCV library, the 2D keypoints from the previous to the
new image can be tracked with subpixel accuracy. As we
have observed a significant number of outliers during the
keypoint tracking, we have utilized RANSAC to filter out the
wrong matches. Furthermore, we also filtered out keypoints
that moved significantly more than the mean distance travelled.
For this, we utilized 3 standard deviations from the mean
distance travelled by all keypoints as a threshold.

Finally, we have updated the state with the new keypoints
and the 3D landmarks (X') by removing the ones correspond-
ing to lost and filtered keypoints. The main parameters of the

module are the parameters required by the KLT algorithm,
i.e., window size, maximum pyramid level and termination
criteria. Furthermore, the module also enforces a lower limit
on the number of keypoints to track. If the number of keypoints
falls under this limit the pipeline terminates. This is to ensure
that subsequent modules, such as the pose estimation have
sufficient data.

C. Pose Estimation

From the landmarks and their corresponding keypoints in
the image, we then determine the pose of the camera with
respect to the world frame. To do so, we created our pose
estimation module. The inputs to this are the following:

e The 2D keypoints (P).

e The 3D landmarks (X).

e The intrinsic matrix K.

o The initial pose. This is used to provide an initial estimate

that the solver can build on.

e The ID of the frame with which we are working. This is

primarily used for plotting purposes.

From these inputs, we utilize them to get an estimate of the
pose. We utilize the perspective-n-points (PNP) RANSAC
solver from the OpenCV library to solve the PNP problem
using RANSAC ([2], [3]). The outputs that the solver returns
are the following:

o The return value (indicating success or failure to find a

solution).

o The rotation vector with respect to the camera.

o The translation vector with respect to the camera.

o The indices of the inliers.

To further refine the solution, we then perform a non-
linear optimization step using the Levenberg-Marquardt mini-
mization scheme to minimize the reprojection error using the

PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

Pose and Landmarks Pose and Landmarks (using inliers only)

o Camera Pose . o CameraPose
- Landmarks

50 -25 00 25 50
X x

Fig. 2: PNP solving and pose refinement. Plot of left uses the
data to solve the initial PNP problem with RANSAC. The plot
on the left showcases the PNP refinement and the inlier points
that were used.

solvePnPRefineLM function from OpenCV [4]. In addition
to the rotation vector and the translation vector outputted
from the previous step, we provide the 2D keypoints and 3D
landmarks that have been filtered as inliers from the previous
RANSAC solver. A comparision between the points used for
solving PNP and refining the output can be found in Fi

After the solver returns the optimized rotation vector and
translation vectors, the rotation vector is converted to a rota-
tion matrix using the Rodrigues function from OpenCV. The
feature then returns the following output:

o The return value (indicating success or failure to find a
solution).

« Rotation matrix (world with respect to camera frame).

o Translation vector (world with respect to camera frame).

D. New Landmark Tracking

To ensure continuous operation of the odometry pipeline,
the new landmark tracking component constantly evaluates
possible candidate keypoint-landmark pairs that can be added
to P and X respectively that can provide high quality in-
formation to the pipeline. For a given state, C' holds the 2D
candidate keypoints corresponding to the latest image frame. F’
holds the location for first observations of the same keypoint.
Tau holds the pose corresponding to the camera frame of the
first observation.

We perform this task in the following steps

1) Continuous Tracking of Candidate Keypoints: Using the
same methods mentioned in III-B, we filter out candidate
keypoints from the previous state that can no longer be tracked.

2) Triangulation and Evaluation of a Landmark: For a
given camera frame i, a candidate keypoint ¢ € C?, we use
the current camera pose T}y, state variables f(c) € F,
7(c) € Tau' to triangulate a candidate z¢ in the world frame
(Fig. 3).

Due to the possible accumulation of inaccuracies in each of
the variables used for triangulation, the set of all candidate
landmarks X} goes through a filtering process to reject
landmarks triangulated behind the camera, and also rejects
outliers based on the current set of active landmarks X*. We
also calculate the angle «(c) as the angle between the two
bearing vectors between the (f(c),7(c)) and (¢, T}). This
angle acts as a basis for declaring a landmark to be significant
as discussed in III-D4

N
/L

7(c) Ty

Fig. 3: Landmark Triangulation Method

(Figure obtained from the spec)

3) Finding new candidate keypoints: We apply the same
methods as in III-A to identify new keypoints using the
previous and current image frames. To improve the quality of
new candidate keypoints, we ensure that they are sufficiently
far enough from existing keypoints in P. For a new candidate
keypoint, its location is saved to both C; and F;, and the
current camera pose 1; is saved to T'au;.

4) Putting it all together: A keypoint-landmark pair is con-
sidered to be eligible to put into P and X respectively when
the triangulation angle exceeds a preset threshold «(c) > «.
This ensures that the keypoint has been tracked for a sufficient
time period (from II-D1) and there’s a sufficient baseline
distance between the two camera poses to reduce the depth
estimation uncertainty.

IV. EXPERIMENTATION AND RESULTS

To help measure the quality of our pipeline, we
performed experiments on the data sets provided. The
screencasts of the experiments for the three datasets
are available at https://www.youtube.com/playlist?list=
PLKhwq5S3PpRIKr-pcsuEx62bNuZnPCTZc.

In our experimentation, except for the frames that were
selected for boostrapping, we use the same set of hyperpa-
rameters for all datasets. The frames selected are discussed in
their respective sections.

A. Parking

During development, this baseline often served as a quality
check, since it involved only motion in a single direction
(to the right), and ground-truth data are provided. The boot-
strapped frames are the 1st (index and image name 0) and 3rd
frame (index and image name 2).

We wanted to highlight some notable observations when we
were experimenting with this dataset:

o Scale Ambiguity: The scale ambiguity phenomenon can
be observed here. As was discussed in class, this occurs
when we use monocular vision since we do not have
a reference that constrains the scaling factor. Our VO
pipeline shows that the camera is moving in the same
direction as the ground truth, but it is moving to the right
at a much greater magnitude.

o Increasing Depth Uncertainty: When the camera passes
through the driveway, the estimated position z increases
significantly. This can be attributed to the fact that the

PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

error estimate of the depth increases quadratically with
respect to the depth value (as shown in the class).
However, when the camera starts to pass through the
parked cars, the estimated z-position starts to decrease.

B. KITTI

For this dataset, the bootstrapped frames are the 1st (index
and image name 0) and 5th frame (index and image name 4).

When experimenting the dataset, we note the following
observations:

o Dropping Keypoints: Around frame 2340, our pipeline
started to drop keypoints. In this scene, the camera stops
moving while at the same time, other cars are passing
by. The camera loses keypoints when it stops, and losees
even more with the cars driving by. We believe that this
keypoint drop is caused by two factors: (1) the occlusions
from the cars passing by covering the previous keypoints
and (2) the camera being stationary and not picking new
keypoints.

C. Malaga

For this dataset, the bootstrapped frames are the 1st (index
and image name 0) and 4th frame (index and image name 3).

When experimenting the dataset, we note the following
observations:

o Loss of Keypoints: The scale ambiguity phenomenon
can be observed here. As was discussed in class, this
occurs when we use monocular vision since we do not
have a reference that constrains the scaling factor. Our
VO pipeline shows that the camera is moving in the same
direction as the ground truth, but it is moving to the right
at a much greater magnitude.

Because of the limited computational resources, we
needed to reduce the number of keypoints that we are
tracking.

V. DISCUSSION

During development, there were several notable challenges
that we encountered.

A. Quality of Keypoint and Landmark Selection

1) Identifying Useful Keypoints: During development, we
found that using features detected by the Shi-Tomasi detector
performed significantly better than the Harris detector or using
SIFT features. These provided points that were more robust
and enabled more accurate pose estimation over time. See
figure 4

2) Limiting the Number of Keypoints and Landmarks:
We aimed to store a low number of keypoints and landmarks in
both the main set P, X and candidate sets C, F, T'au to ensure
that our pipeline did not slow down as we progressed through
a dataset. We set a limit of 500 keypoints and landmarks that
can be available in the sets P and X respectively, and an
incremental limit of 100 within P, X from C that can be added
per iteration, and 500 that can be added to C' itself. These
thresholds were empirically determined to ensure the balance

(b) Shi-Tomasi Keypoints

Fig. 4: Keypoint Detection Comparison during Bootstrapping

Keypoint Tracking Count

o 500 1000

Frame

1500 2000

Fig. 5: Number of Keypoints Tracked with the Malaga Dataset

between having a sufficient number of candidates available to
track, while not bloating the main state variables, see Figure
5.

3) Improving Keypoint and Landmark Diversity: By de-
ciding to reduce the number of keypoints and landmarks,
we had to figure out a way to improve the diversity of the
keypoint and landmark locations that were tracked in C, and
subsequently added to the sets P, X. To achieve this, we added
a feature to track a new candidate keypoint c if it is at least at
a distance of 8 pixels away from a currently tracked keypoint
in P. This number was empirically determined.

Similarly, if we pick a set of C., XC eligible candidate
keypoints and their respective landmarks to add to P, X
respectively, we only add the best n candidates based on a
ranking metric that depends on both the triangulation angle
a(c),c € C. and the distance of the landmark z € X¢ from
the currently tracked set of landmarks X.

Figure 6 shows the search diversity with the KITTI dataset

B. Filtering Out Outliers

Since pose estimation was both an output of a given step
7 and an input to the next step 7 + 1, the pipeline was very
sensitive to outliers present in the data passed around in the
state variable, often failing due to an accumulation of such
errors.

1) Using RANSAC for Inlier Filtering: As was mentioned
in the lecture and what we encountered during development,
outliers have a significant effect in the estimates that our
pipeline produces. To filter out these, we use RANSAC to re-
move and reject outliers when performing Keypoint Tracking,
Pose Estimation, and Candidate Keypoint Tracking.

PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

Keypoints on Image

1200

1000

200 600 800

(a) Evaluated Keypoints vs Existing Keypoints

Keypoints and Landmarks

1254

100 A

75 A

50 4

254

Z position

0 ==
Keypoints : 485

Landmarks : 485

Keypoints candidates: 322
Landmarks candidates: 322

—25

~50

-5 0 5 10
X position

-15 -10

(b) Evaluated Candidates vs Existing Candidates

Fig. 6: Diversity of Candidate vs Tracked Keypoints and
Landmarks in the KITTI dataset

2) Using Reprojection Error to Optimize Triangulation
Accuracy: Based on the lecture, since the triangulation of
2D points to 3D Landmarks involves solving a linear least-
squares problem, we attempted to perform non-linear opti-
mization using the scipy.optimize.least_squares
method using Levenberg-Marquardt (LM) algorithm. How-
ever, we noticed the bulk of the datapoints already had a low
reprojection error < 1.0 pixels, with large outliers appearing
in certain iterations, see Figure 7. In favor of speeding up
each triangulation iteration, and considering that candidate
keypoints are not contributing to the main pipeline, we de-
cided to implement a simpler rejection mask that rejects any
triangulated landmarks that have a reprojection error > 2.0
pixels.

3) Removing Outliers based on Z-Score: Another outlier
rejection method we implemented was to remove the land-
marks that were located 3 standard deviations away from
the mean. Since the computation of the Z-score was done
for all three dimensions, we took the average across all of
them instead. A possible improvement could be to consider a
weighted mean by the dimension.

C. Verifying Reference Frames

Once development of individual components was done by
each member, we realized that there was a lack of standard-
ization and understanding of the best coordinate frames to
evaluate and pass data. Initally, we believed it was an error
with the landmark triangulation and keypoint addition. Upon
further inspection, we realized that the reference frames were
mixed up between the camera frame and the world frame.
After correcting this, we were able to observe outputs that
align better with the ground truth.

Reprojection Error

Accepted: 70

0.44 Rejected: 0

0.31

0.24

0.19

0.0 1

20 30 40 50 60 70

(a) Accepted Landmarks

Reprojection Error

Accepted: 6

Rejected: 20
4000 -

3000 A

2000 -

1000 4

(b) Rejected Landmarks

Fig. 7: Plot showing the acceptance and rejections of triangu-
lated landmarks based on reprojection error

The error was quite subtle. Looking at the trajectory plot
when compared to the ground truth, it initially would appear
that the trajectory aligns with the ground truth. However,
after multiple frames (around 20), our pipeline provides an
estimate that deviates strongly from the ground truth. Once this
happens, the performance of the pipeline significantly declines
and is unable to fix itself.

VI. CONCLUSION

In this project, a monocular 2D—3D VO pipeline has
been developed and and implemented. Our pipeline utilized
an indirect, feature based method that can be separated into
two main part: initialization, where informative features and
landmarks are selected for VO; and a continuous operation
where the features are tracked across consecutive frames, the
camera pose is determined, and new landmarks are added.
The developed pipeline has been evaluated using three open
source dataset: KITTI, Malaga, and Parking. From the exper-
imental results, we can conclude that our pipeline performed
adequately, albeit with some expected challenges due to the
inherent limitations of monocular VO. The observed scale
ambiguity and increasing depth uncertainty highlight the need
for integration with additional sensors, such as IMUs, or the
use of known references to improve accuracy and robustness.

VII. AUTHOR CONTRIBUTIONS

Aron was responsible for the initialization module, while
Kristof, Robert, and Rajiv contributed to the continuous VO

PROJECT REPORT — VISION ALGORITHMS FOR MOBILE ROBOTICS, 2024 FALL

module, namely keypoint tracking, current pose estimation,
and new landmark triangulation respectively. All team mem-
bers contributed equally to developing visualizations, running
experiments, and debugging.

(1]
(2]
[3]

[4]

REFERENCES

D. Scaramuzza, “Lecture notes on vision algorithms for mobile robotics,”
University of Ziirich, Tech. Rep., 2024.

OpenCV, OpenCV: solvePnP, 2023, accessed: 2025-01-06. [Online].
Available: https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html

, OpenCV: Camera Calibration and 3D Reconstruction, 2023,
accessed: 2025-01-06. [Online]. Available: https://docs.opencv.org/4.x/
d9/d0c/group__calib3d.html#ga50620f0e26e02caa2e9adc07b5fbf24e
——, Calibrate Camera — cv::calibrateCamera, 2025, accessed:
2025-01-06. [Online]. Available: \url{https://docs.opencv.org/4.x/d9/
dOc/group__calib3d.html#ga650badd286296d992{82c3e6dfa525fa}

